Indefinite Integration

-Integration works around the idea of working the derivative "backwards" called antidifferentiation.
-A function F is an antiderivative of f on an interval I if $F^{\prime}(x)=f(x)$ for all x in I.

$$
F(x)=x^{3} \quad \text { becomes } \quad \frac{d}{d x}\left[x^{3}\right]=3 x^{2}
$$

-A differential equation in x and y is an equation that involves x and y and the derivatives of y
-Ex

$$
y^{\prime}=3 x \quad y^{\prime}=x^{2}+1
$$

Example

-Find the general solution to the differential equation $y^{\prime}=2$.

$$
y=2 x+C
$$

Notation

-When solving the form $\frac{d y}{d x}=f(x)$ it is sometimes convenient to write in the form

$$
d y=f(x) d x
$$

-The operation of finding all solutions of this equation is called antidifferentiation or indefinite integration and is denoted \int

Basic Integration Rules

$$
\begin{array}{ll}
\int F^{\prime}(x) d x=F(x)+C & \begin{array}{l}
\text { "integration is the "inverse" of } \\
\text { differentiation" }
\end{array} \\
\frac{d}{d x}\left[\int f(x) d x\right]=f(x) & \text { "differentiation is the "inverse" of } \\
\text { integration" }
\end{array}
$$

Example

Describe the antiderivative of $3 x$.

$$
\begin{array}{ll}
\int 3 x d x=3 \int x d x & \text { 'constant multiple } \\
=3 \int x^{1} d x & \\
=3\left(\frac{x^{2}}{2}\right)+C & \text { 'Power Rule } \\
=\frac{3}{2} x^{2}+C & \text { 'Simplify }
\end{array}
$$

Steps
-Original Integral \Rightarrow Rewrite \Rightarrow Integrate \Rightarrow Simplify
Examples

$$
\begin{aligned}
& \int \frac{1}{x^{3}} d x \Rightarrow x^{-3} d x \Rightarrow \frac{x^{-2}}{-2}+C \Rightarrow-\frac{1}{2 x^{2}}+C \\
& \int \sqrt{x} d x \Rightarrow \int x^{1 / 2} d x \Rightarrow \frac{x^{3 / 2}}{3 / 2}+C \Rightarrow \frac{2}{3} x^{3 / 2}+C \\
& \int 2 \sin (x) d x \Rightarrow 2 \int \sin (x) d x \Rightarrow 2(-\cos (x))+C \Rightarrow-2 \cos (x)+C
\end{aligned}
$$

Example-Integrating Polynomials

$$
\begin{aligned}
& \int d x=\int 1 d x \\
&=x+C \\
& \int(x+2) d x=\int x d x+\int 2 d x \\
&=\frac{x^{2}}{2}+C_{1}+2 x+C_{2} \\
&=\frac{x^{2}}{2}+2 x+C \\
& \int\left(3 x^{4}\right.\left.-5 x^{2}+x\right) d x \\
&=\frac{3}{5} x^{5}-\frac{5}{3} x^{3}+\frac{1}{2} x^{2}+C
\end{aligned}
$$

Example

$$
\begin{aligned}
\int \frac{x+1}{\sqrt{x}} & d x \\
& =\int\left(\frac{x}{\sqrt{x}}+\frac{1}{\sqrt{x}}\right) d x \\
& =\int\left(x^{1 / 2}+x^{-1 / 2}\right) d x \\
& =\frac{x^{3 / 2}}{3 / 2}+\frac{x^{1 / 2}}{1 / 2}+C \\
& =\frac{2}{3} x^{3 / 2}+2 x^{1 / 2}+C
\end{aligned}
$$

NOTE: Just like differentiation you can't just integrate numerator and denominator.

Example

$$
\begin{aligned}
& \int \frac{\sin x}{\cos ^{2} x} d x \\
& \quad=\int\left(\frac{1}{\cos x}\right)\left(\frac{\sin x}{\cos x}\right) d x \\
& \quad=\int \sec x \tan x d x \\
& \quad=\sec x+C
\end{aligned}
$$

Initial Conditions and Particular Solutions

$$
y=\int\left(3 x^{2}-1\right) d x=x^{3}-x+C \quad \text { 'General Solution }
$$

If you have a value $y=F(x)$ for a value of x called the initial condition you can find the particular solution.
i.e. consider the point $(2,4)$

$$
\begin{aligned}
& F(x)=x^{3}-x+C \\
& F(2)=4 \\
& F(2)=8-2+C=4 \\
& C=-2
\end{aligned}
$$

So,

$$
F(x)=x^{3}-x-2 \text { is a particular solution. }
$$

Example

Find the general solution of $F^{\prime}(x)=\frac{1}{x^{2}}, x>0$ and the particular solution that satisfies $F(1)=0$.

$$
\begin{aligned}
& F(x)=\int \frac{1}{x^{2}} d x \\
& =\int x^{-2} d x
\end{aligned}
$$

$$
\begin{gathered}
=\frac{x^{-1}}{-1}+C \\
\frac{-1}{x}+C, x>0 \\
F(1)=\frac{-1}{1}+C=0 \\
C=1 \\
F(x)=\frac{-1}{x}+1, x>0
\end{gathered}
$$

Example

A ball is thrown upward with an initial velocity of $64 \mathrm{ft} / \mathrm{sec}$ from an initial height of 80 ft .

Find the position function giving the height s as a function if time t.
When does the ball hit the ground?
Let $t=0$ be initial time.

$$
\begin{array}{ll}
s(0)=80 & \text { 'Initial Height } \\
s^{\prime}(0)=64 & \text { 'Initial velocity }
\end{array}
$$

Using - $32 \mathrm{ft} / \mathrm{sec}^{2}$ as gravity:

$$
s^{\prime \prime}(t)=-32
$$

$$
s^{\prime}(t)=\int s^{\prime \prime}(t) d t=\int-32 d t=-32 t+C_{1}
$$

Use initial velocity:

$$
\begin{aligned}
& s^{\prime}(0)=64 \\
& s^{\prime}(t)=-32 t+C_{1} \\
& -32(0)+C_{1}=64 \\
& C_{1}=64 \\
& s^{\prime}(t)=-32 t+64
\end{aligned}
$$

Next by integrating $s^{\prime}(t)$

$$
\begin{aligned}
& s(t)=\int s^{\prime}(t) d t=\int(-32 t+64) d t \\
& =-16 t^{2}+64 t+C_{2}
\end{aligned}
$$

Using initial height:

$$
\begin{aligned}
& s(0)=80 \\
& s(t)=-16 t^{2}+64 t+C_{2} \\
& -16(0)^{2}+64(0)+C_{2}=80 \\
& C_{2}=80
\end{aligned}
$$

$$
s(t)=-16 t^{2}+64 t+80
$$

Solve the position function for where the ball hit the ground.

$$
\begin{aligned}
& s(t)=-16 t^{2}+64 t+80=0 \\
& -16(t+1)(t-5)=0 \\
& t=-1,5 \\
& t=5 \mathrm{sec}
\end{aligned}
$$

